Pulsatile flow increases the expression of eNOS, ET-1, and prostacyclin in a novel in vitro coculture model of the retinal vasculature.

نویسندگان

  • Tony E Walshe
  • Gail Ferguson
  • Paul Connell
  • Colm O'Brien
  • Paul A Cahill
چکیده

PURPOSE By the development of a novel retinal microvascular endothelial and pericyte cell coculture system, this study determined the effects of pulsatile flow on the activation of the endothelial cell markers nitric oxide (NO), prostacyclin (PGI2), and endothelin (ET)-1. METHODS Monocultured bovine retinal endothelial cells (BRECs) and cocultured BRECs with bovine retinal pericytes (BRPs) were exposed to low flow (flow rate, 0.3 mL/min; pulse pressure, 6 mmHg; shear stress, 0.5 dyne/cm2) or high flow (flow rate, 25 mL/min; pulse pressure, 56 mmHg; shear stress, 23 dynes/cm2) for 24 hours, by using a novel perfused transcapillary culture system. The cells were characterized by immunohistochemistry and electron and confocal microscopy. Endothelial nitric oxide synthase (eNOS) and phosphorylated-eNOSSer1179 (pp-eNOS) were determined by Western blot analysis. Nitrate, PGI2, and ET-1 levels were quantified in the medium perfusate by using fluorometric and enzyme-linked immunosorbent assays, respectively. Activation of cyclooxygenase (COX)-2 in BRECs was determined by measuring COX-2 promoter activity with a luciferase reporter assay. RESULTS The presence of BRPs and BRECs was confirmed by Western blot, immunocytochemistry, and scanning electron microscopy. Phosphorylated eNOS (pp-eNOS) protein levels in BRECs were significantly increased from low to high flow in both mono- and cocultures, concomitant with a significant increase in nitrate levels in the conditioned medium after exposure to pulsatile flow. In parallel cultures, PGI2 levels were also significantly enhanced concomitant with an increase in the transactivation of a COX-2 promoter BREC after exposure to pulsatile flow. ET-1 levels were also increased in both mono- and cocultured cells. conclusions. In this study a novel, functioning, in vitro model of retinal microvascular endothelial and pericyte cells that respond to changes in pulsatile flow was established.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells

Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...

متن کامل

Effect of dexamethasone on the endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) genes expression during hepatic warm ischemia/reperfusion in rat

Background: Hepatic ischemia/reperfusion injury (I/RI) is a multifactorial pathophysiologic process which can lead to liver damage and dysfunction. This study examined the protective effect of dexamethasone on the gene expression of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) and on the liver tissue damage during warm hepatic I/R. Materials and Methods: A total of 32 mal...

متن کامل

The role of pulsatile flow in controlling microvascular retinal endothelial and pericyte cell apoptosis and proliferation.

AIMS Aberrant retinal blood flow is a hallmark of various retinopathies and may be a causative factor in the pathology associated with these conditions. We examined the effects of pulsatile flow on bovine retinal endothelial cell (BREC) and bovine retinal pericyte (BRP) apoptosis and proliferation. METHODS AND RESULTS Co-cultured BRECs and BRPs were exposed to low (0.3 mL/min) or high (25 mL/...

متن کامل

PULMONARY VASCULAR MUSCLE PROLIFERATION AS A RESULT OF PROTEIN AND mRNA-eNOS ALTERATIONS IN A RAT MODEL OF CHF

Endothelial Nitric Oxide Synthase (eNOS) produces nitric oxide (NO) from L-arginine and is important for the maintenance of cardiovascular homeostasis. Congestive heart failure (CHF) generally results in increased pulmonary blood flow and if untreated leads to pulmonary hypertension and end stage heart failure. We therefore hypothesized that increased pulmonary flow without changes in pres...

متن کامل

An advection-diffusion multi-layer porous model for stent drug delivery in coronary arteries

Arterial drug concentration distribution determines local toxicity. The safety issues dealt with Drug-Eluting Stents (DESs) reveal the needs for investigation about the effective factors contributing to fluctuations in arterial drug uptake. The current study focused on the importance of hypertension as an important and controversial risk factor among researchers on the efficacy of Heparin-Eluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 46 1  شماره 

صفحات  -

تاریخ انتشار 2005